Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations.

نویسندگان

  • Magnus Lundborg
  • Erik Lindahl
چکیده

Free energy calculation has long been an important goal for molecular dynamics simulation and force field development, but historically it has been challenged by limited performance, accuracy, and creation of topologies for arbitrary small molecules. This has made it difficult to systematically compare different sets of parameters to improve existing force fields, but in the past few years several authors have developed increasingly automated procedures to generate parameters for force fields such as Amber, CHARMM, and OPLS. Here, we present a new framework that enables fully automated generation of GROMACS topologies for any of these force fields and an automated setup for parallel adaptive optimization of high-throughput free energy calculation by adjusting lambda point placement on the fly. As a small example of this automated pipeline, we have calculated solvation free energies of 50 different small molecules using the GAFF, OPLS-AA, and CGenFF force fields and four different water models, and by including the often neglected polarization costs, we show that the common charge models are somewhat underpolarized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pmx: Automated protein structure and topology generation for alchemical perturbations

Computational protein design requires methods to accurately estimate free energy changes in protein stability or binding upon an amino acid mutation. From the different approaches available, molecular dynamics-based alchemical free energy calculations are unique in their accuracy and solid theoretical basis. The challenge in using these methods lies in the need to generate hybrid structures and...

متن کامل

A Python tool to set up relative free energy calculations in GROMACS

Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of findi...

متن کامل

Ion solvation thermodynamics from simulation with a polarizable force field.

Thermodynamic measurements of the solvation of salts and electrolytes are relatively straightforward, but it is not possible to separate total solvation free energies into distinct cation and anion contributions without reference to an additional extrathermodynamic assumption. The present work attempts to resolve this difficulty using molecular dynamics simulations with the AMOEBA polarizable f...

متن کامل

Comparison of implicit solvent models for the simulation of protein-surface interactions

Empirical force field-based molecular simulations can provide valuable atomistic-level insights into protein-surface interactions in aqueous solution. While the implicit treatment of solvation effects is desired as a means of improving simulation efficiency, existing implicit solvent models were primarily developed for the simulation of peptide or protein behavior in solution alone, and thus ma...

متن کامل

Recent Advances in Free Energy Calculations with a Combination of Molecular Mechanics and Continuum Models

Recently, the combination of state-of-the-art molecular mechanical force fields with continuum solvation models enables us to make relatively accurate predictions of both structures and free energies for macromolecules from molecular dynamics trajectories. The first part of this review is focused on the history and basic theory of free energy calculations based on physically effective energy fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 119 3  شماره 

صفحات  -

تاریخ انتشار 2015